Add like
Add dislike
Add to saved papers

A Compressed-Sensing Based Blind Deconvolution Method for Image Deblurring in Dental Cone-Beam Computed Tomography.

In cone-beam computed tomography (CBCT), reconstructed images are inherently degraded, restricting its image performance, due mainly to imperfections in the imaging process resulting from detector resolution, noise, X-ray tube's focal spot, and reconstruction procedure as well. Thus, the recovery of CBCT images from their degraded version is essential for improving image quality. In this study, we investigated a compressed-sensing (CS)-based blind deconvolution method to solve the blurring problem in CBCT where both the image to be recovered and the blur kernel (or point-spread function) of the imaging system are simultaneously recursively identified. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate the feasibility of using the algorithm for image deblurring in dental CBCT. In the experiment, we used a commercially available dental CBCT system that consisted of an X-ray tube, which was operated at 90 kVp and 5 mA, and a CMOS flat-panel detector with a 200-μm pixel size. The image characteristics were quantitatively investigated in terms of the image intensity, the root-mean-square error, the contrast-to-noise ratio, and the noise power spectrum. The results indicate that our proposed method effectively reduced the image blur in dental CBCT, excluding repetitious measurement of the system's blur kernel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app