Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Braided bioresorbable cardiovascular stents mechanically reinforced by axial runners.

Polymeric bioresorbable stents (BRSs) can eliminate the long-term stent restenosis by degrading after vascular remolding and have been recommended for the congenital heart disease treatment. However, the mechanical weakness remains one of main inferiorities of their applications. So, the aim of this study was to develop mechanically reinforced bioresorbable stents (MRBSs) based on poly(p-dioxanone) (PPDO) monofilaments and braiding technology. Axial runners were introduced and MRBSs showed greatly higher compression force and relatively lower viscous performance, as well as longer mechanical stability during degradation, compared with controls. Besides, stent compression behaviors were analyzed experimentally and numerically to investigate their deformation mechanisms. The results showed increased contacting points and friction force among yarns in MRBSs. Also, the skeleton formed in MRBSs attributed to higher yarn bending degree, strain energy and better structure stability during compression. Combined with the non-linear PPDO material stress-strain ratio and thermodynamic theory, yarn based stent compression modes were discussed. In addition, the autocatalysis and nonrandom chain scission degradation behaviors of MRBSs were revealed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app