Add like
Add dislike
Add to saved papers

Water defluoridation by Fe(III)-loaded sisal fibre: Understanding the influence of the preparation pathways on biosorbents' defluoridation properties.

Defluoridation properties of two Fe(III)-loaded plant biomass (Fe(III)-activated sisal fibre (Fe(III)-ASF) and post-alkalized Fe(III)-ASF (PA-Fe(III)-ASF)) distinguished by preparation pathways through exclusion/inclusion of post-alkalization are presented, with the aim of understanding the influence of post-alkalization in the preparation pathway to their fluoride removal properties. Findings reveal that PA-Fe(III)-ASF shows higher chemical stability with removal efficiency increasing towards acidic conditions, whereas Fe(III)-ASF manifests a lower chemical stability with removal efficiency increasing (in a wider pH range) with the increase in pH. This is attributable to the nature of the interactions between Fe(III) and the biomass surface functional groups. The removal efficiency by PA-Fe(III)-ASF has a strong positive correlation (0.98) to the surface charge/speciation induced by pH and the reverse is true for the Fe(III)-ASF. These findings therefore suggest that the principal fluoride removal mechanism is electrostatic interactions and ligand exchange for PA-Fe(III)-ASF and Fe(III)-ASF, respectively. Therefore, inclusion/exclusion of post-alkalization in preparation steps is an important aspect to consider in the production of Fe(III)-loaded biosorbents for water defluoridation for acquisition of specific defluoridation properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app