Add like
Add dislike
Add to saved papers

Dissipativity-based non-fragile sampled-data control design of interval type-2 fuzzy systems subject to random delays.

ISA Transactions 2018 September 12
This paper investigates the β-dissipativity-based reliable non-fragile sampled-data control problem for a class of interval type-2 (IT2) fuzzy systems. In particular, it is allowed to have randomly occurring time-varying delays in the controller design, which are modeled by Bernoulli distributed white noise sequences. Precisely, the IT2 fuzzy model and the non-fragile sampled-data controller are formulated by considering the mismatched membership functions. By constructing an appropriate Lyapunov-Krasovskii functional, a set of delay-dependent conditions is derived to guarantee that the closed-loop IT2 fuzzy system is strictly <Q,S,R>-β-dissipative. Moreover, the gain matrices of feedback reliable non-fragile sampled-data controller are derived in terms of linear matrix inequalities (LMIs), which can be solved by using existing LMI solvers. Two numerical examples are eventually given to illustrate the applicability and effectiveness of the proposed controller design technique.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app