Add like
Add dislike
Add to saved papers

Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products.

Food Chemistry 2019 January 16
Inhibition of α-glucosidase and non-enzymatic glycation is considered as an effective approach to treat type 2 diabetes. Herein, multispectroscopic techniques and molecular docking analysis were used to investigate the inhibition of galangin on α-glucosidase and non-enzymatic glycation. Galangin showed a reversible inhibition on α-glucosidase activity in a mixed-type manner through a monophasic kinetic process, and induced the fluorescence quenching and conformational changes of α-glucosidase by forming α-glucosidase-galgangin complex. Molecular docking revealed that galangin primarily interacted with the amino acid residues within the active site of α-glucosidase, which may prevent the entrance of substrate resulting in a decrease in catalytic efficiency of α-glucosidase. Moreover, galangin moderately inhibited the formation of intermediates of non-enzymatic glycation, fructosamine and α-dicarbonyl compounds and strongly inhibited the formation of advanced glycation end products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app