Add like
Add dislike
Add to saved papers

Effects of polychlorinated biphenyls (PCB) on California sea lion (Zalophus californianus) lymphocyte functions upon in vitro exposure.

Polychorinated biphenyl (PCB) congeners are a cause for concern due to their persistence in the environment, their lipophilic properties that cause them to bio-accumulate in top predators, and their adverse effects on mammalian health. For example, the common urogenital carcinoma reported in California sea lions (Zalophus californianus) (CSL) is associated with high tissue levels of PCBs, but the mechanisms responsible for this association are unknown. This study investigated the effect of exposure to six PCB congeners and a congener mix at low and environmentally relevant concentrations on NK cell-like and T cell activity using in vitro assays on cryopreserved lymph node mononuclear cells isolated from dead CSL. Non dioxin-like congeners 153 and 180 increased lymphocyte proliferation at 5 and 10 ppm, while congener 138 decreased proliferation by up to 43% at 15 ppm. Dioxin-like PCBs 118 and 169 did not affect lymphocyte proliferation, while the effects of congener 105 depended on the mitogen concentration; these did not correlate with their predicted toxic equivalent factors. NK cell-like activity was affected only by the highest concentration of PCBs tested; it was increased by non-dioxin-like congeners 138 and 153, and decreased by dioxin-like congener 169. The PCB congener mix suggested that the effects of PCB congeners were not simply additive. Our results concur with effects of PCBs reported for other pinniped's lymphocytes and add further experimental support to the observation that dioxin-like PCBs are not the most toxic congeners for marine mammals, contrary to effects in other species. This is the first evidence of in vitro suppression of NK cell-like cytotoxicity by a dioxin-like congener in a pinniped. More importantly, the observed results suggest that PCBs can modulate the CSL immune system, increasing exposed individuals' susceptibility to viral and oncogenic challenges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app