Add like
Add dislike
Add to saved papers

Reduced Graphene Oxide-Based Double Network Polymeric Hydrogels for Pressure and Temperature Sensing.

Sensors 2018 September 20
We demonstrate the fabrication of novel reduced graphene oxide (rGO)-based double network (DN) hydrogels through the polymerization of poly( N -isopropylacrylamide) (PNIPAm) and carboxymethyl chitosan (CMC). The facile synthesis of DN hydrogels includes the reduction of graphene oxide (GO) by CMC, and the subsequent polymerization of PNIPAm. The presence of rGO in the fabricated PNIPAm/CMC/rGO DN hydrogels enhances the compressibility and flexibility of hydrogels with respect to pure PNIPAm hydrogels, and they exhibit favorable thermoresponsivity, compressibility, and conductivity. The created hydrogels can be continuously cyclically compressed and have excellent bending properties. Furthermore, it was found that the hydrogels are pressure- and temperature-sensitive, and can be applied to the design of both pressure and temperature sensors to detect mechanical deformation and to measure temperature. Our preliminary results suggest that these rGO-based DN hydrogels exhibit a high potential for the fabrication of soft robotics and artificially intelligent skin-like devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app