Add like
Add dislike
Add to saved papers

Adaptive Fuzzy Tracking Control for Strict-Feedback Markov Jumping Nonlinear Systems With Actuator Failures and Unmodeled Dynamics.

In this paper, an adaptive fuzzy tracking controller is developed for a class of strict-feedback Markovian jumping systems subjected to multisource uncertainties. The unpredictable actuator failures, the unknown nonlinearities, and the unmodeled dynamics are simultaneously taken into consideration, which evolve according to the Markov chain. It is noted that the elements in the transition rate matrix of the Markov chain are not fully available. In virtue of the norm estimation approach, the challenges caused by the complex multiple uncertainties and actuator failures are effectively handled. Furthermore, to compensate for the unavailable switching nonlinearities, the fuzzy logic systems are employed as online approximators. As a result, a novel adaptive fuzzy fault-tolerant tracking control structure is constructed. The sufficient condition is provided to guarantee that the studied system is stochastically stable. Finally, a number of illustrative examples are employed to demonstrate the effectiveness of the proposed methodology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app