JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Targeted genome fragmentation with CRISPR/Cas9 enables fast and efficient enrichment of small genomic regions and ultra-accurate sequencing with low DNA input (CRISPR-DS).

Genome Research 2018 October
Next-generation sequencing methods suffer from low recovery, uneven coverage, and false mutations. DNA fragmentation by sonication is a major contributor to these problems because it produces randomly sized fragments, PCR amplification bias, and end artifacts. In addition, oligonucleotide-based hybridization capture, a common target enrichment method, has limited efficiency for small genomic regions, contributing to low recovery. This becomes a critical problem in clinical applications, which value cost-effective approaches focused on the sequencing of small gene panels. To address these issues, we developed a targeted genome fragmentation approach based on CRISPR/Cas9 digestion that produces DNA fragments of similar length. These fragments can be enriched by a simple size selection, resulting in targeted enrichment of up to approximately 49,000-fold. Additionally, homogenous length fragments significantly reduce PCR amplification bias and maximize read usability. We combined this novel target enrichment approach with Duplex Sequencing, which uses double-strand molecular tagging to correct for sequencing errors. The approach, termed CRISPR-DS, enables efficient target enrichment of small genomic regions, even coverage, ultra-accurate sequencing, and reduced DNA input. As proof of principle, we applied CRISPR-DS to the sequencing of the exonic regions of TP53 and performed side-by-side comparisons with standard Duplex Sequencing. CRISPR-DS detected previously reported pathogenic TP53 mutations present as low as 0.1% in peritoneal fluid of women with ovarian cancer, while using 10- to 100-fold less DNA than standard Duplex Sequencing. Whether used as standalone enrichment or coupled with high-accuracy sequencing methods, CRISPR-based fragmentation offers a simple solution for fast and efficient small target enrichment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app