Add like
Add dislike
Add to saved papers

Spatial Separation of Mitochondrial Calcium Uptake and Extrusion for Energy-Efficient Mitochondrial Calcium Signaling in the Heart.

Cell Reports 2018 September 19
Mitochondrial Ca2+ elevations enhance ATP production, but uptake must be balanced by efflux to avoid overload. Uptake is mediated by the mitochondrial Ca2+ uniporter channel complex (MCUC), and extrusion is controlled largely by the Na+ /Ca2+ exchanger (NCLX), both driven electrogenically by the inner membrane potential (ΔΨm ). MCUC forms hotspots at the cardiac mitochondria-junctional SR (jSR) association to locally receive Ca2+ signals; however, the distribution of NCLX is unknown. Our fractionation-based assays reveal that extensively jSR-associated mitochondrial segments contain a minor portion of NCLX and lack Na+ -dependent Ca2+ extrusion. This pattern is retained upon in vivo NCLX overexpression, suggesting extensive targeting to non-jSR-associated submitochondrial domains and functional relevance. In cells with non-polarized MCUC distribution, upon NCLX overexpression the same given increase in matrix Ca2+ expends more ΔΨm . Thus, cardiac mitochondrial Ca2+ uptake and extrusion are reciprocally polarized, likely to optimize the energy efficiency of local calcium signaling in the beating heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app