Add like
Add dislike
Add to saved papers

Adiabatic Ligand Binding in Heme Proteins: Ultrafast Kinetics of Methionine Rebinding in Ferrous Cytochrome c.

The dynamics of methionine geminate recombination following photodissociation in ferrous cytochrome c is investigated over a broad temperature range. The kinetic response, above the solvent glass transition ( Tg ), is nearly monoexponential and displays a weak temperature dependence. Below Tg , the rebinding kinetics are nonexponential and can be explained using a quenched distribution of enthalpic rebinding barriers, arising from a relatively narrow distribution of heme out-of-plane displacements. The Arrhenius prefactor of this (Δ S = 2) reaction is ∼1011 s-1 , which is similar to what has been found for the (Δ S = 1) NO binding reaction in heme proteins. This observation, along with other examples of ultrafast CO binding, provides strong evidence that ligand binding to heme is an adiabatic reaction with a spin-independent prefactor. In order to simultaneously account for the adiabatic nature of the reaction as well as the temperature dependence of both ultrafast CO and methionine geminate rebinding, it is proposed that a spin triplet state intersects and strongly couples to the reactant ( S = 2) and product ( S = 0) state surfaces in the transition state region along the reaction coordinate. It is also suggested that the nature of the intersecting triplet state and the reaction path may depend upon the proximity of the photolyzed ligand relative to the iron atom. At temperatures below ∼60 K, the kinetic data suggest that there is either an unexpected retardation of the heme photoproduct relaxation or that heavy atom quantum mechanical tunneling becomes significant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app