Add like
Add dislike
Add to saved papers

Sliding behavior of zirconia porous implant surfaces against bone.

Different zirconia porous layers were produced on zirconia dense zirconia substrates by slip casting using powder with different mean sizes: 40 μm (Z40), 70 μm (Z70), and 100 μm (Z100). The dynamic and static coefficients of friction against bovine femoral bone, mimicking the implantation process, were conducted using a ball-on-flat reciprocating sliding tribometer under 3 N of normal load. Additionally, the porous layers were assessed with regard to their low temperature degradation (aging). Results revealed that the porous layers were able to keep their integrity during the sliding testes against bone, with no zirconia particles being transferred to the bone. Results did not show significant differences (p > 0.05) in kinetic and static COF values for Z40, Z70, Z100, and GRAD specimens, ranging from 0.53 to 0.77 and 0.65 to 0.90, respectively. The aging tests revealed that all surfaces were prone to low temperature degradation (~49% of monoclinic content after 18 h). In conclusion, the cohesive integrity of the layers and relatively high COF observed reveled that zirconia porous layers may be considered for replacing the current implant surfaces, and are expected to improve their primary stability. © 2018 Wiley Periodicals, Inc. J. Biomed. Mater. Res. Part B, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app