Add like
Add dislike
Add to saved papers

Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features.

Medical Physics 2018 September 20
PURPOSE: To identify the optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based (WDB) radiomic features in CT images.

MATERIALS AND METHODS: The CT images of patients with histologically confirmed nonsmall cell lung carcinomas (NSCLCs) in training (Dataset T; n = 162) and validation (Dataset V; n = 143) datasets were analyzed for this study. The optimal mother wavelets were identified based on the impacts of the WDB radiomic features on the patient survival times. Four hundred and thirty-two three-dimensional WDB radiomic features were calculated from regions of interest (ROI) of 162 tumor contours. A Coxnet algorithm was used to select a subset of radiomic features (signature) based on the prediction of survival times with a fivefold cross validation. The impacts of the radiomic features on the patients' survival times were assessed by using a multivariate Cox proportional hazard regression (MCPHR) model. The major contribution of this study was to identify optimal mother wavelets based on a maximization of a novel ranking index (RI) incorporating the Coxnet cross-validated partial log-likelihood and the summation of the P-values of the radiomic features in the MCPHR model on Dataset T. The prognostic performance of the optimal mother wavelets was validated based on the concordance index (CI) of the MCPHR models when applied to Dataset V. The proposed approach was tested by using 31 mother wavelets from 6 wavelet families that were available in a commercially available software (Matlab® 2016b).

RESULTS: The optimal mother wavelets were Symlet 5 and Biorthogonal 2.6 at 128 requantization levels, which yielded RIs of 4.27 ± 0.29 (3 features) and 6.50 ± 0.50 (5 features), respectively. The CIs of the MCPHR models of Symlet 5 were 0.66 ± 0.03 (Dataset T) and 0.64 ± 0.00 (Dataset V), whereas those of Biorthogonal 2.6 were 0.68 ± 0.03 (Dataset T) and 0.62 ± 0.02 (Dataset V). The radiomic signatures included the GLRLM-based LHL gray level nonuniformity feature that demonstrated statistically significant differences in stratifying patients with better and worse prognoses in Datasets T and V.

CONCLUSION: This study has revealed the potential of Symlet and Biorthogonal mother wavelets in  the survival prediction of lung cancer patients by using WDB radiomic features in CT images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app