Add like
Add dislike
Add to saved papers

Inhibition of MYC attenuates tumor cell self-renewal and promotes senescence in SMARCB1 deficient Group 2 Atypical Teratoid Rhabdoid Tumors to suppress tumor growth in vivo.

Loss of SMARCB1 is the hallmark genetic event that characterizes rhabdoid tumors in children. Rhabdoid tumors of the brain (ATRT) occur in young children and are particularly challenging with poor long term survival. SMARCB1 is a member of the SWI/SNF chromatin remodeling complex that is responsible for determining cellular pluripotency and lineage commitment. The mechanisms by which SMARCB1 deletion results in tumorigenesis remain unclear. Recent studies demonstrate that ATRT consists of 3 genomic sub-groups with a subset of poor outcome tumors expressing high BMP and MYC pathway activation. Here we show that MYC occupies distinct promoter loci in ATRT compared to embryonic stem (ES) cells. Further, using human ATRT cell lines, patient-derived cell culture, ex-vivo patient-derived tumor, and orthotopic xenograft models, we show that MYC inhibition is a molecular vulnerability in SMARCB1-deleted tumors and that such inhibition effectively suppresses BMP and pluripotency-associated genomic programs, attenuates tumor cell self-renewal, promotes senescence and inhibits ATRT tumor growth in vivo. Transgenic expression of Omomyc (a bona-fide MYC dominant negative) or chemical inhibition of MYC transcriptomic programs with the BET inhibitor JQ1 phenocopy genetic depletion of MYC, effectively restricting ATRT tumor growth and opening a promising therapeutic avenue for rhabdoid tumors in children. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app