Add like
Add dislike
Add to saved papers

Symbolic dynamics to enhance diagnostic ability of portable oximetry from the phone oximeter in the detection of paediatric sleep apnoea.

Physiological Measurement 2018 September 20
OBJECTIVE: This study is aimed at assessing symbolic dynamics as a reliable technique to characterise complex fluctuations of portable oximetry in the context of automated detection of childhood obstructive sleep apnoea-hypopnoea syndrome (OSAHS).

APPROACH: Nocturnal oximetry signals from 142 children with suspected OSAHS were acquired using the Phone Oximeter: a portable device that integrates a pulse oximeter with a smartphone. An apnoea-hypopnoea index (AHI) ≥5 events/h from simultaneous in-lab polysomnography was used to confirm moderate-to-severe childhood OSAHS. Symbolic dynamics was used to parameterise non-linear changes in the overnight oximetry profile. Conventional indices, anthropometric measures, and time-domain linear statistics were also considered. Forward stepwise logistic regression was used to obtain an optimum feature subset. Logistic regression (LR) was used to identify children with moderate-to-severe OSAHS.

MAIN RESULTS: The histogram of 3-symbol words from symbolic dynamics showed significant differences (p <0.01) between children with AHI <5 events/h and moderate-to-severe patients (AHI ≥5 events/h). Words representing increasing oximetry values after apnoeic events (re-saturations) showed relevant diagnostic information. Regarding the performance of individual characterization approaches, the LR model composed of features from symbolic dynamics alone reached a maximum performance of 78.4% accuracy (65.2% sensitivity; 86.8% specificity) and 0.83 area under the ROC curve (AUC). The classification performance improved combining all features. The optimum model from feature selection achieved 83.3% accuracy (73.5% sensitivity; 89.5% specificity) and 0.89 AUC, significantly (p-value <0.01) outperforming the other models.

SIGNIFICANCE: Symbolic dynamics provides complementary information to conventional oximetry analysis enabling reliable detection of moderate-to-severe paediatric OSAHS from portable oximetry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app