Add like
Add dislike
Add to saved papers

Comparable functional motor outcomes after repair of peripheral nerve injury with an elastase-processed allograft in a rat sciatic nerve model.

Microsurgery 2018 October
BACKGROUND: A bridging nerve autograft is the gold standard for the repair of segmental nerve injury that cannot be repaired directly. However, limited availability and donor site morbidity remain major disadvantages of autografts. Here, a nerve allograft decellularized with elastase was compared with an autograft regarding functional motor outcome in a rat sciatic segmental nerve defect model. Furthermore, the effect of storage on this allograft was studied.

METHODS: Sixty-six Lewis rats (250-300 g) underwent a 10-mm sciatic nerve reconstruction using either a cold- (n = 22) or frozen-stored (n = 22) decellularized nerve allograft or an autograft (n = 22). Sprague-Dawley rats (300-350 g) served as full major histocompatibility complex-mismatched donors. Functional motor outcome was evaluated after 12 and 16 weeks. Ankle angle, compound muscle action potential (CMAP), isometric tetanic force, wet muscle weight, and histomorphometry were tested bilaterally.

RESULTS: For CMAP and isometric tetanic force, no significant differences were observed between groups. In contrast, for ankle angle, histomorphometry and muscle weight, the cold-stored allograft performed comparable to the autograft, while the frozen-stored allograft performed significantly inferior to the autograft. At week 16, ankle angle was 88.0 ± 3.1% in the cold-stored group, 77.4 ± 3.6% in the frozen-stored group, and 74.1 ± 3.1% in the autograft group (P < .001); At week 16, the muscle weight showed a recovery up to 71.1 ± 4.8% in the autograft group, 67.0 ± 6.6% in the cold-stored group, and 64.7 ± 3.7% in the frozen-stored group (P < .05).

CONCLUSIONS: A nerve allograft decellularized with elastase, if stored under the right conditions, results in comparable functional motor outcomes as the gold standard, the autograft.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app