Add like
Add dislike
Add to saved papers

Hierarchical metal/polymer metamaterials of tunable negative Poisson's ratio fabricated by initiator-integrated 3D printing (i3DP).

Nanotechnology 2018 December 15
Metamaterials with artificially designed architectures can achieve unique and even unprecedented physical properties, which show promising applications in actuators, amplifiers and micromechanical controls. An initiator-integrated 3D printing technology (i3DP) was applied in this study to create scalable, metal/polymer meta-mechanical materials, which can gradually achieve negative Poisson's ratio, high strength and ultralow density, as well as high compressive and super-elastic behavior. The i3DP was enabled by integrating an atomic-transfer radical polymerization (ATRP) initiator with UV-curable resin, followed by polyelectrolyte brushes (PMETAC) grafting via surface-initiated ATRP and thereafter electroless plating to form metal coatings. Compared with polymer structures, the compressive stress of metal-polymer structure can be doubled when deposited with a 190 nm copper layer. The hollow metallic materials possess a tunable Poisson's ratio, and the highest average recoverability, which can recover nearly completely to their original shape after over 30% compression. Overall, this i3DP approach provides meta-structures with substantial benefits from the hierarchical design and fabrication flexibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app