Add like
Add dislike
Add to saved papers

Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel.

The aim of this work was to study the adsorption and removal of chromium (VI) ions contained in aqueous solutions using a chitosan-based hydrogel synthesized via chemical crosslinking of radical chitosan, polyacrylic acid, and N,N'-methylenebisacrylamide. Fourier-transform infrared spectroscopy confirmed the hydrogel synthesis and presence of reactive functional groups for the adsorption of chromium (VI) ions. The chromium (VI) adsorption mechanism was evaluated using non-linear Langmuir, Freundlich, Redlich-Peterson, and Sips isotherms, with the best fit found by the non-linear Redlich-Peterson isotherm. The maximum chromium (VI) adsorption capacities of the chitosan-based hydrogel were 73.14 and 93.03 mg metal per g dried hydrogel, according to the non-linear Langmuir and Sips isotherm models, respectively. The best kinetic fit was found with the pseudo-nth order kinetic model. The chromium (VI) removal percentage at pH 4.5 and 100 mg L-1 initial metal concentration was 94.72%. The results obtained in this contribution can be useful for future works involving scale-up of a water and wastewater treatment method from a pilot plant to full-scale plant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app