Add like
Add dislike
Add to saved papers

Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots.

Plant Cell Reports 2018 December
KEY MESSAGE: SmbHLH148 activated the whole biosynthetic pathways of phenolic acids and tanshinones, thus upregulated the production of both the two groups of pharmaceutical ingredients in Salvia miltiorrhiza. Phenolic acids and tanshinones are the two important groups of pharmaceutical ingredients presented in Salvia miltiorrhiza Bunge. The bHLH transcription factors could regulate secondary metabolism efficiently in plants. However, there are only some MYCs have been studied on regulation of either phenolic acids or tanshinones biosynthesis. In this study, a bHLH TF named SmbHLH148, which is homologous to AtbHLH148, AtbHLH147 and CubHLH1, was isolated and functionally characterized from S. miltiorrhiza. Transcription of SmbHLH148 could be intensely induced by ABA and also be moderately induced by MeJA and GA. SmbHLH148 is present in all the six tissues and mostly expressed in fibrous root and flowers. Subcellular localization analysis found that SmbHLH148 was localized in the nucleus. Overexpression of SmbHLH148 significantly increased not only three phenolic acids components accumulation but also three tanshinones content. Content of caffeic acid, rosmarinic acid and salvianolic acid B were reached to 2.87-, 4.00- and 5.99-fold of the control in the ObHLH148-3, respectively. Content of dihydrotanshinone I, cryptotanshinone, and tanshinone I were also present highest in ObHLH148-3, reached 2.5-, 5.04- and 3.97-fold of the control, respectively. Expression analysis of pathway genes of phenolic acids and tanshinones in transgenic lines showed that most of them were obviously upregulated. Moreover, transcription of AREB and JAZs were also induced in SmbHLH148 overexpression lines. These results suggested that SmbHLH148 might be taken part in ABA and MeJA signaling and activated almost the whole biosynthetic pathways of phenolic acids and tanshinones, thus the production of phenolic acids and tanshinones were upregulated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app