Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Improving the stability of recombinant anthrax protective antigen vaccine.

Vaccine 2018 October 16
Development of recombinant protective antigen (rPA)-based anthrax vaccines has been hindered by a lack of stability of the vaccines associated with spontaneous deamidation of asparagine (Asn) residues of the rPA antigen during storage. In this study, we explored the role that two deamidation-prone Asn residues located directly adjacent to the receptor binding site of PA, Asn713 and Asn719 , play in the stability of rPA-based anthrax vaccines. We modified these residues to glutamine (Gln) and generated rPA(N713Q/N719Q), since Gln would not be expected to deamidate on a time scale relevant to vaccine storage. While wild-type rPA vaccine formulated with aluminum hydroxide lost immunogenicity upon storage, as measured by induction of toxin-neutralizing antibodies in mice, the rPA(N713Q/N719Q) vaccine did not exhibit a significant loss in immunogenicity. This finding suggests that modification of Asn713 and Asn719 of rPA to deamidation-resistant amino acids may improve the stability of rPA-based anthrax vaccines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app