Add like
Add dislike
Add to saved papers

Detecting gene-gene interactions for complex quantitative traits using generalized fuzzy classification.

BMC Bioinformatics 2018 September 19
BACKGROUND: Quantitative traits or continuous outcomes related to complex diseases can provide more information and therefore more accurate analysis for identifying gene-gene and gene- environment interactions associated with complex diseases. Multifactor Dimensionality Reduction (MDR) is originally proposed to identify gene-gene and gene- environment interactions associated with binary status of complex diseases. Some efforts have been made to extend it to quantitative traits (QTs) and ordinal traits. However these and other methods are still not computationally efficient or effective.

RESULTS: Generalized Fuzzy Quantitative trait MDR (GFQMDR) is proposed in this paper to strengthen identification of gene-gene interactions associated with a quantitative trait by first transforming it to an ordinal trait and then selecting best sets of genetic markers, mainly single nucleotide polymorphisms (SNPs) or simple sequence length polymorphic markers (SSLPs), as having strong association with the trait through generalized fuzzy classification using extended member functions. Experimental results on simulated datasets and real datasets show that our algorithm has better success rate, classification accuracy and consistency in identifying gene-gene interactions associated with QTs.

CONCLUSION: The proposed algorithm provides a more effective way to identify gene-gene interactions associated with quantitative traits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app