Add like
Add dislike
Add to saved papers

Melatonin Induces Osteoblastic Differentiation of Mesenchymal Stem Cells and Promotes Fracture Healing in a Rat Model of Femoral Fracture via Neuropeptide Y/Neuropeptide Y Receptor Y1 Signaling.

The function of melatonin (MLT) in promoting fracture healing has been demonstrated in previous studies. However, the molecular mechanism underlying therapeutic effects of MLT is not entirely clear. In this study, mesenchymal stem cells (MSCs) were isolated from rat bone marrow and identified by flow cytometry. We found that MLT treatment upregulated the neuropeptide Y (NPY) and NPY receptor Y1 (NPY1R) expression, and promoted the proliferation and migration of MSCs, which was suppressed by BIBP3226, an inhibitor of NPY1R. Moreover, the levels of NPY and NPY1R in MSCs undergoing osteoblastic differentiation were upregulated after MLT administration. MLT-induced osteoblastic differentiation of MSCs was suppressed by BIBP3226 treatment, as evidenced by decreased levels of alkaline phosphatase (ALP), collagen type I α1 chain, osteocalcin, and runt-related transcription factor 2, downregulated activity of ALP, as well as reduced calcium nodule formation. Furthermore, we demonstrated that MLT could promote fracture healing in a rat model of femoral fracture, which was accompanied by the elevated expression of NPY and NPY1R. The administration of BIBP3226 inhibited fracture healing mediated by MLT. To sum up, our results show that MLT promotes osteoblastic differentiation of MSCs and fracture healing by NPY/NPY1R signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app