Add like
Add dislike
Add to saved papers

Ligand free surface of CdS nanoparticles enhances the energy transfer efficiency on interacting with Eosin Y dye - Helping in the sensing of very low level of chlorpyrifos in water.

With an aim to sense the presence of chlorpyrifos (CP) pesticide in water, fluorescence resonance energy transfer (FRET) between the chemically synthesized ligand free CdS nanocrystals (donor) and Eosin Y dye (acceptor) has been studied in presence and absence of CP in the FRET pair system. This prepared water soluble CdS nanocrystals have been characterized by Transmission Electron microscopy (TEM), which shows that CdS nanocrystals are spherical in shape with an average size of 5 nm approximately. Further, Fourier Transform Infrared Spectroscopic (FTIR) study confirms that these CdS nanocrystals are ligand free stable nanocrystals. It has been observed that this CdS nanocrystals and Eosin Y FRET pair can strongly sense the presence of chlorpyrifos (CP) pesticide in water up to a very low concentration of 10 ppb, which is the sensitivity of detection or detection limit. This FRET pair is found to be very simple and cost effective for the sensing of toxic pesticide CP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app