Add like
Add dislike
Add to saved papers

Increase of histone acetylation in the GABAergic neurons in the rostral ventromedial medulla associated with mechanical hypersensitivity after repeated restraint stress.

Psychophysical stresses frequently increase sensitivity and response to pain, which is termed stress-induced hyperalgesia (SIH). However, the mechanism remains unknown. The rostral ventromedial medulla (RVM) and locus coeruleus (LC) are core elements of the descending pain modulatory system, which modulate nociceptive transmission in the spinal dorsal horn. In the present study we examined the acetylation of histone H3 in the RVM and LC after repeated restraint stress for 3 weeks to clarify changes in the descending pain modulatory system in the rat with SIH. The repeated restraint stress induced mechanical hypersensitivity in the hindpaw and an increase in acetylation of histone H3 in the RVM but not the LC. The number of acetylated histone H3-IR cells in the RVM was significantly higher in the repeated restraint group (282.9 ± 43.1) than that in the control group (134.7 ± 15.6, p <  0.05). Furthermore, the repeated restraint stress increased acetylation of histone H3 in the RVM GABAergic neurons but not the RVM serotonergic neurons. The GAD67 protein level in the RVM was significantly higher in repeated restraint group (144.9 ± 17.0%) than that in the control group (100.0 ± 8.9%, p < 0.05). These findings suggest the possibility that the stress-induced neuroplasticity in the RVM GABAergic neurons is involved in the mechanical hypersensitivity due to the dysfunction of the descending pain modulatory system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app