Add like
Add dislike
Add to saved papers

Effect of organic and inorganic salt environment on the complex coacervation of in situ formed protein nanoparticles and DNA.

Complex coacervation was noticed between in situ formed protein (a primarily hydrophobic Zein protein with pI = 6.2) nanoparticles (size 80-120 nm) and ds-DNA (a high charge density polyanion), in the ionic liquid (IL) solutions of 1-ethyl-3-methyl imidazolium chloride [C2mim][Cl], and 1-octyl-3-methyl imidazolium chloride [C8mim][Cl], in the studied ionic strength range of I = 10-4 to 6 × 10-1  M, which was extended to strong monovalent 1:1 electrolyte (NaCl) to explore the commonality between the organic and inorganic salt (ionic) environment on coacervation. The salt dependent coacervation profile was monitored from the measured turbidity of the interacting solution, and zeta potential, (ζ) and apparent hydrodynamic radius (Rh ) of interpolymer complexes, which depicted the following three discernible interaction regimes common to all the salts: (i) Region-I: I = 0.0001-0.01 M, primary binding, (ii) Region-II, I = 0.01-0.1 M, secondary binding, and (iii) Region-III, I = 0.1-0.6 M, saturation binding. The free-energy and the network density calculations favored preferential coacervation in [C2mim][Cl] samples. Nonetheless, commonality in the overall ionic strength dependent coacervation profiles could still be observed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app