Add like
Add dislike
Add to saved papers

Self-Transport and Manipulation of Aqueous Droplets on Oil-Submerged Diverging Groove.

We report experimental study of self-transport of aqueous droplets along an oil-submerged diverging groove structure. The migration phenomenon is illustrated, and the effect of various parameters such as droplet size d, oil layer thickness h, groove angle 2θ, and groove thickness δ on the droplet transport behavior (i.e., migration velocity and length) is investigated. Our study reveals that complete engulfment of aqueous droplets in the oil layer, that is attributed to a positive spreading parameter ( S > 0), is a prerequisite for the droplet transport. The results show that only droplets of diameter larger than the oil layer thickness (i.e., d ≥ h) get transported owing to a differential Laplace pressure between the leading and trailing faces of a droplet because of the diverging groove. Using experimental data, the variation of droplet migration velocity with distance along the diverging groove is correlated as U( x) = ψ x-0.9 , where ψ = d0.3 2θ-2.2 h-1.5 δ0.7 . The submerged groove structure was used to demonstrate simultaneous and sequential coalescence and transport of multiple droplets. Finally, the submerged groove structure was employed for extraction of aqueous droplets from oil. The proposed technique opens up a new avenue for evaporation and contamination free transport and coalescence of droplets for chemical and biological applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app