Add like
Add dislike
Add to saved papers

Mechanistic Evaluation of Lipopolysaccharide-Alexidine Interaction Using Spectroscopic and in Silico Approaches.

ACS Infectious Diseases 2018 October 12
The increasing problem of multidrug resistance (MDR) in bacteria calls for discovery of new molecules and diagnostic methodologies that are effective against a wide range of microbial pathogens. We have studied the role of alexidine dihydrochloride (alex) as a bioaffinity ligand against lipopolysaccharide (LPS), a pathogen-associated surface marker universally present on all Gram-negative bacteria. While the activity of alex against bacteria is biologically known, little information exists on its mechanism of action or binding stoichiometry. We have used nuclear magnetic resonance (NMR), fluorescence, and surface plasmon resonance (SPR) spectroscopies to probe the binding characteristics of alex and LPS molecules. Our results indicate that LPS:alex stoichiometry lies between 1:2 and 1:4 and has a dissociation constant ( KD ) of 38 μM that is mediated through electrostatic interactions between the negatively charged phosphate groups present on LPS and the positively charged guanidinium groups present in alex. Further, molecular dynamics (MD) simulations performed to determine the conformational interaction between the two molecules show good agreement with the experimental results, which substantiate the potential of alex molecule for LPS neutralization and hence, development of efficient in vitro diagnostic assays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app