Add like
Add dislike
Add to saved papers

Synthesis of macrocyclic precursors of the vioprolides.

The vioprolides are novel depsipeptides that have not been synthesized. However, they have been identified as important targets for synthesis because of their novel biological activities and challenging chemical structures. Following early work on the synthesis of a modified tetrapeptide that contained both the (E)-dehydrobutyrine and thiazoline components of vioprolide D, problems were encountered in taking an (E)-dehydrobutyrine containing intermediate further into the synthesis. A second approach to vioprolides and analogues was therefore investigated in which (E)- and (Z)-dehydrobutyrines were to be introduced by selenoxide elimination very late in the synthesis. A convergent approach to advanced macrocyclic precursors of the vioprolides was then completed using a modified hexapeptide and a dipeptidyl glycerate. In this work, it was necessary to protect the 2-hydroxyl group of the glycerate as its acetate and not as its 2,2,2-trichloroethoxycarbonate. Preliminary studies were carried out on the introduction of the required dehydrobutyrine and thiazoline components into advanced intermediates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app