Add like
Add dislike
Add to saved papers

Heterostructured Silk-Nanofiber-Reduced Graphene Oxide Composite Scaffold for SH-SY5Y Cell Alignment and Differentiation.

Stem cell therapy is promising for treating traumatic injuries of the central nervous system, where a major challenge is to effectively differentiate neural stem cells into neurons with uniaxial alignment. Recently, controlling stem cell fate by modulating biophysical cues (e.g., stiffness, conductivity, and patterns) has emerged as an attractive approach. Herein, we report a new heterostructure composite scaffold to induce cell-oriented growth and enhance the neuronal differentiation of SH-SY5Y cells. The scaffold is composed of aligned electrospinning silk nanofibers coated on reduced graphene paper with high conductivity and good biocompatibility. Our experimental results demonstrate that the composite scaffold can effectively induce the oriented growth and enhance neuronal differentiation of SH-SY5Y cells. Our study develops a novel scaffold for enhancing the differentiation of SH-SY5Y cells into neurons, which holds great potential in the treatment of neurological diseases and injuries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app