JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

An Update on Patents Covering Agents That Interfere with the Cancer Glycolytic Cascade.

ChemMedChem 2018 September 19
Many tumors exhibit altered metabolic characteristics relative to normal and healthy tissues. Their metabolic profile highlights a strong prevalence of glycolysis over oxidative phosphorylation, regardless of their exposure to different oxygen levels (the Warburg effect). This condition originates from a set of gene regulations, consisting of the overexpression of some enzymes or transporters involved in the glycolytic pathway. Therefore, these effectors may constitute appealing targets for the implementation of selective therapeutic interventions against cancer. Recently, significant progress has been made in the discovery of molecules that act at various levels of the glycolytic pathway of tumor cells. So far, some of the most widely explored targets of the glycolytic cascade are represented by glucose transporters, hexokinase, 6-phosphofructokinase, enolase, pyruvate kinase, lactate dehydrogenase, and monocarboxylate transporters. The purpose of this minireview is to provide an update on some of the most recently patented bioactive molecules that are able to interfere with cancer glycolysis, and on their use in specific combination therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app