Add like
Add dislike
Add to saved papers

The improved energy metabolism and blood oxygen-carrying capacity for pufferfish, Takifugu fasciatus, against acute hypoxia under the regulation of oxygen sensors.

Hypoxia frequently occurs in aquatic ecosystem, which is influenced by salinity, water temperature, weather, and surface water runoff. In order to shed further light on the evolutionary and adaptive mechanisms in fish under hypoxic condition, the impact of acute hypoxia (1.63 ± 0.2 mg/L) and reoxygenation (7.0 ± 0.3 mg/L) on oxygen sensors, energy metabolism, and hematological indices was evaluated in Takifugu fasciatus. Data from transcriptional level analysis show that the expressions of genes related to oxygen sensors (HIF-1α, PHD2, and VHL) were upregulated in the brain and liver under hypoxia and recovered under reoxygenation. The upregulation of GLUT2, VEGF-A, and EPO in conjugation with VEGF-A protein and hematological indices conferred the rapid adjustments of cellular glucose uptake and blood oxygen-carrying capacities in pufferfish. Higher levels of glycolysis-related mRNAs (HK, PGK1, and PGAM2), HK activity, and proteins (PGK1 and PGAM2) were detected in the brain and liver under hypoxic condition compared with control. Interestingly, the expression of MDH1 at the mRNA, enzyme activity, and protein levels was significantly increased in the brain at 0 or 2 h and in the liver at 8 h under hypoxic condition. In addition, although the enzyme activity and mRNA expression of LDH in the brain were not significantly changed, a persistent upregulation was observed in the liver during hypoxia exposure. This study demonstrated that pufferfish could counterpoise the energetic demands and hematological functional properties evoked by oxygen sensors after hypoxia. Our findings provided new insights into the molecular regulatory mechanism of hypoxia in pufferfish.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app