Add like
Add dislike
Add to saved papers

Data-Driven Method for Efficient Characterization of Rare Event Probabilities in Biochemical Systems.

As mathematical models and computational tools become more sophisticated and powerful to accurately depict system dynamics, numerical methods that were previously considered computationally impractical started being utilized for large-scale simulations. Methods that characterize a rare event in biochemical systems are part of such phenomenon, as many of them are computationally expensive and require high-performance computing. In this paper, we introduce an enhanced version of the doubly weighted stochastic simulation algorithm (dwSSA) (Daigle et al. in J Chem Phys 134:044110, 2011), called dwSSA[Formula: see text], that significantly improves the speed of convergence to the rare event of interest when the conventional multilevel cross-entropy method in dwSSA is either unable to converge or converges very slowly. This achievement is enabled by a novel polynomial leaping method that uses past data to detect slow convergence and attempts to push the system toward the rare event. We demonstrate the performance of dwSSA[Formula: see text] on two systems-a susceptible-infectious-recovered-susceptible disease dynamics model and a yeast polarization model-and compare its computational efficiency to that of dwSSA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app