Add like
Add dislike
Add to saved papers

Icariin and icaritin recover UVB-induced photoaging by stimulating Nrf2/ARE and reducing AP-1 and NF-κB signaling pathways: a comparative study on UVB-irradiated human keratinocytes.

Icariin (ICA) and icaritin (ICT) exhibit many pharmacological functions including anti-osteoporosis, anti-cardiovascular, and anti-cancer activities; however, there are few comprehensive studies that track the detailed effects on UVB-induced photoaging. The recovery effects of ICA and ICT were investigated in UVB-irradiated human keratinocytes (HaCaTs). The results indicated that ICT and ICA showed strong radical scavenging activity, and the reactive oxygen species (ROS) scavenging activity of ICT was superior. UVB-induced matrix metalloproteinase-1 (MMP-1) expression was blocked by ICA via the inhibition of mitogen-activated protein kinase/activator protein 1 (MAPK/AP-1), which directly reduced extracellular matrix (ECM) degradation. ICT activated nuclear factor erythroid 2 related factor 2 (Nrf2) to improve the anti-oxidative stress capacity and suppress nuclear factor-κB (NF-κB) activation, decreasing vascular endothelial growth factor (VEGF) protein, and inflammatory cytokines induced ECM degrading enzyme secretion. Moreover, ICT was more advantageous to improve transforming growth factor beta 1 (TGF-β1) and procollagen type I expression than ICA, promoting the synthesis of collagen. Therefore, ICA and ICT have potential to treat UVB-induced oxidative stress, inflammation and photoaging, and will be posited as a novel strategy to alleviate photodamage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app