Add like
Add dislike
Add to saved papers

Influence of the substituent on the phosphine ligand in novel rhenium(i) aldehydes. Synthesis, computational studies and first insights into the antiproliferative activity.

Cyrhetrenyl aldehyde derivatives [(η5-C5H4CHO)Re(CO)2PR3] with R = methyl (Me, 2a), phenyl (Ph, 2b), and cyclohexyl (Cy, 2c) were synthesized by a photochemical reaction from the starting material [(η5-C5H4CHO)Re(CO)3] (1) and the corresponding phosphines. The complexes were fully characterized by FT-IR, 1H, 13C and 31P NMR spectroscopy, elemental analysis and mass spectrometry. The molecular structures of 2a-c have also been determined. Electronic structure calculations by TD-DFT and electrochemical studies are in sound agreement with the effect of the substitution of one carbonyl group by a phosphine ligand. Additionally, the antiproliferative activity of complexes 1 and 2a-c was studied on the human cancer cell lines HT-29 and PT-45 using an MTT assay. Out of all new compounds, only the triphenylphosphine derivative 2b exhibited pronounced cytotoxic effects on both cell lines, being ca. 1.5 times more potent than cisplatin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app