Add like
Add dislike
Add to saved papers

Crystal structure and theoretical studies of two π-conjugated fused-ring chalcones: ( E )-1-(anthra-cen-9-yl)-3-(9-ethyl-9 H -carbazol-3-yl)prop-2-en-1-one and ( E )-1-(anthracen-9-yl)-3-[4-(9 H -carbazol-9-yl)phen-yl]prop-2-en-1-one.

The title chalcones, C31 H23 NO and C35 H23 NO, were synthesized via Claisen-Schmidt condensation reactions. Both structures were solved and refined using single-crystal X-ray diffraction data and optimized at the ground state using the density functional theory (DFT) method with the B3LYP/6-311++G(d,p) level. In the crystals, π-π inter-ations and weak C-H⋯O and C-H⋯π inter-actions are observed. The effect of these inter-molecular inter-actions in the solid state can be seen by the difference between the experimental and theoretical optimized geometrical parameters. The structures have also been characterized by UV-Vis spectroscopy. The smallest energy gaps of 2.86 and 2.96 eV enhance the nonlinear responses of such mol-ecular systems. Hirshfeld surface analyses and 2D (two-dimensional) fingerprint plots were used to qu-antify the inter-molecular inter-actions present in the crystal, indicating that these are the most important contribution to the crystal packing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app