Add like
Add dislike
Add to saved papers

Shape transformable bifurcated stents.

Scientific Reports 2018 September 18
Non-invasive delivery of artificial implants, stents or devices in patients is vital for rapid and successful recovery. Unfortunately, because the delivery passage is often narrower than the size of the delivered object, a compromise between the shape that is effective at the targeted location and a thin form that allows smooth unobstructed travel to the destination is needed. We address this problem through two key technologies: 3D printing and shape memory polymers (SMPs). 3D printing can produce patient-customizable objects, and SMPs can change their initially formed shape to the final desired shape through external stimulation. Using these two technologies, we examine the design and fabrication of bifurcated stents. This study presents a mock-up where blood vessels are fabricated using moulded silicon, which supports the effectiveness of the proposed method. The experimental results reveal that a bifurcated stent with a kirigami structure can smoothly travel inside a vessel without being obstructed by branched parts. We believe that this work can improve the success rate of stent insertion operations in medicine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app