Add like
Add dislike
Add to saved papers

Effects of silicate-based composite material on the proliferation and mineralization behaviors of human dental pulp cells: An in vitro assessment.

Dental Materials Journal 2018 September 15
The objective of this study was to investigate the effects of a silicate-based composite material on proliferation and mineralization of human dental pulp cells (hDPCs), which was compared with those of calcium hydroxide (Ca(OH)2 , CH) and tricalcium silicate (Ca3 SiO5 , C3S). HDPCs were cultured with CH, C3S and tricalcium silicate/dicalcium silicate (Ca3 SiO5 /Ca2 SiO4 , C3S/C2S) composites extract. The CCK-8 assay showed that the composite material stimulated the proliferation of hDPCs. The odontogenic marker genes and DSPP protein expression were more significantly up-regulated by the C3S/C2S composite material compared with pure CH and C3S. HDPCs cultured with composite material extract exert stronger ALP activity and alizarin red S staining. C3S/C2S composite material was advantageous over pure C3S by showing enhanced ability to stimulate the proliferation and odontogenic differentiation of hDPCs, suggesting that the C3S/C2S composite materials possess desirable biocompatibility and bioactivity, and might be a new type of pulp-capping agent and dentin alternative materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app