Add like
Add dislike
Add to saved papers

Network Distance-Based Simulated Annealing and Fuzzy Clustering for Sensor Placement Ensuring Observability and Minimal Relative Degree.

Sensors 2018 September 15
Network science-based analysis of the observability of dynamical systems has been a focus of attention over the past five years. The maximum matching-based approach provides a simple tool to determine the minimum number of sensors and their positions. However, the resulting proportion of sensors is particularly small when compared to the size of the system, and, although structural observability is ensured, the system demands additional sensors to provide the small relative order needed for fast and robust process monitoring and control. In this paper, two clustering and simulated annealing-based methodologies are proposed to assign additional sensors to the dynamical systems. The proposed methodologies simplify the observation of the system and decrease its relative order. The usefulness of the proposed method is justified in a sensor-placement problem of a heat exchanger network. The results show that the relative order of the observability is decreased significantly by an increase in the number of additional sensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app