Add like
Add dislike
Add to saved papers

Comparative Analysis of Biological and Functional Properties of Bone Marrow Mesenchymal Stromal Cells Expanded in Media with Different Platelet Lysate Content.

Due to their ability to induce immunological tolerance in the recipient, mesenchymal stromal cells (MSCs) have been utilized in the treatment of various hematological and immune- and inflammation-mediated diseases. The clinical application of MSCs implies prior in vitro expansion that usually includes the use of fetal bovine serum (FBS). The present study evaluated the effect of different platelet lysate (PL) media content on the biological properties of MSCs. MSCs were isolated from the bone marrow of 13 healthy individuals and subsequently expanded in three different culture conditions (10% PL, 5% PL, 10% FBS) during 4 passages. The cells cultured in different conditions had comparable immunophenotype, clonogenic potential, and differentiation capacity. However, MSC growth was significantly enhanced in the presence of PL. Cultures supplemented with 10% PL had a higher number of cumulative population doublings in all passages when compared to the 5% PL condition (p < 0.03). Such a difference was also observed when 10% PL and 10% FBS conditions were compared (p < 0.005). A statistically significant difference in population doubling time was determined only between the 10% PL and 10% FBS conditions (p < 0.005). Furthermore, MSCs cultured in 10% PL were able to cause a 66.9% reduction of mitogen-induced lymphocyte proliferation. Three chromosome aberrations were detected in PL conditions. Since two changes occurred in the same do nor, it is possible they were donor dependent rather than caused by the culture condition. These findings demonstrate that a 10% PL condition enables a higher yield of MSCs within a shorter time without altering MSC properties, and should be favored over the 5% PL condition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app