Add like
Add dislike
Add to saved papers

Effect of pore geometry on the fatigue properties and cell affinity of porous titanium scaffolds fabricated by selective laser melting.

Porous titanium scaffolds with different unit cell type (tetrahedron and octahedron) and pore size (500 µm and 1000 µm) were fabricated by selective laser melting (SLM), and the effects of unit cell type and pore size on their fatigue properties and cell affinity were studied. The fatigue properties were performed by static and dynamic mechanical testing, while the cell affinity was evaluated in vitro with mouse osteoblast cells. It was found that octahedron scaffolds exhibited superior static mechanical properties, longer fatigue lives and higher fatigue strength in comparison to those of tetrahedron ones. As expected, scaffolds with 1000 µm pore resulted in lower compressive properties and shorter fatigue lives compared to those with 500 µm pore. The differences were analyzed based on the unit cell structure, porosity, and manufacturing imperfections. Scanning electron microscopy (SEM) and immunofluorescence showed that cells spread better on octahedron scaffolds than those on tetrahedron ones. Meanwhile, the scaffolds with 1000 µm pore were more suitable for cell attachment and growth within the same unit cell owing to higher porosity. The comparison of different pore geometry on the mechanical and biological property provided further insight into designing an optimal porous scaffold.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app