Add like
Add dislike
Add to saved papers

Pharmacophore mapping, molecular docking, chemical synthesis of some novel pyrrolyl benzamide derivatives and evaluation of their inhibitory activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis.

Bioorganic Chemistry 2018 August 29
In an effort to produce new lead antimycobacterial compounds, herein we have reported the synthesis of a sequence of new pyrrolyl benzamide derivatives. The new chemical entities were screened to target enoyl-ACP reductase enzyme, which is one of the key enzymes of M. tuberculosis that are involved in type II fatty acid biosynthetic pathway. Compound 3q exhibited H-bonding interactions with Tyr158, Thr196 and co-factor NAD+ that binds the active site of InhA. All the pyrrolyl benzamide compounds were evaluated as inhibitors of M. tuberculosis H37 Rv as well as inhibitors of InhA. Among them, few representative compounds were tested for mammalian cell toxicity on the human lung cancer cell-line (A549) and MV cell line that presented no cytotoxicity. Five of these compounds exhibited a good activity against InhA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app