Add like
Add dislike
Add to saved papers

Improvements in cognition and associations with measures of aerobic fitness and muscular power following structured exercise.

OBJECTIVES: Cognition, along with aerobic and muscular fitness, declines with age. Although research has shown that resistance and aerobic exercise may improve cognition, no consensus exists supporting the use of one approach over the other. The purpose of this study was to compare the effects of steady-state, moderate-intensity treadmill training (TM) and high-velocity circuit resistance training (HVCRT) on cognition, and to examine its relationships to aerobic fitness and neuromuscular power.

METHODS: Thirty older adults were randomly assigned to one of three groups: HVCRT, TM, or control. Exercise groups attended training 3 days/wk for 12 weeks, following a 2 week adaptation period. The NIH Cognitive Toolbox was used to assess specific components of cognition and provided an overall fluid composite score (FCS). The walking response and inhibition test (WRIT) was specifically used to assess executive function (EF) and provided an accuracy (ACC), reaction time (RT) and global score (GS). Aerobic power (AP) and maximal neuromuscular power (MP) were measured pre- and post-intervention. Relationships between variables using baseline and mean change scores were assessed.

RESULTS: Significant increases were seen from baseline in ACC (MD = 14.0, SE = 4.3, p = .01, d = 1.49), GS (MD = 25.6, SE = 8.0, p = .01, d = 1.16), and AP (MD = 1.4, SE = 0.6, p = .046, d = 0.31) for HVCRT. RT showed a trend toward a significant decrease (MD = -0.03, SE = 0.016, p = .068, d = 0.32) for HVCRT. No significant within-group differences were detected for TM or CONT. Significant correlations were seen at baseline between AP and FCS, as well as other cognitive domains; but none were detected among change scores. Although no significant correlation was evident between MP and FCS or GS, there was a trend toward higher MP values being associated with higher FCS and GS scores.

CONCLUSIONS: Our results support the use of HVCRT over TM for improving cognition in older persons, although the precise mechanisms that underlie this association remain unclear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app