Add like
Add dislike
Add to saved papers

EFFECTS OF MYOSTATIN ON THE MECHANICAL PROPERTIES OF MUSCLES DURING REPEATED ACTIVE-LENGTHENING IN THE MOUSE.

The aim of the present study was to investigate how myostatin dysfunction affects fast and slow muscle stiffness and viscosity during severe repeated loading.

METHODS: Isolated extensor digitorum longus (EDL) and soleus muscles of young adult female mice of the BEH (dysfunctional myostatin) and BEH+/+ (functional myostatin) strains were subjected to 100 subsequent contraction-stretching loading cycles during which contractile and mechanical properties were assessed. BEH mice exhibited greater exercise-induced muscle damage, although the effect was muscle- and age-dependent and limited to the early phases of simulated exercise. The relative reduction of the EDL muscle isometric force recorded during the initial 10-30 loading cycles was greater in BEH mice than in BEH+/+ mice and the soleus muscle of either strain. The induced damage was associated with lower muscle stiffness. The effects of myostatin on the mechanical properties of muscles depend on muscle type and maturity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app