Add like
Add dislike
Add to saved papers

Variations in maternal adenylate cyclase genes are associated with congenital Zika syndrome in a cohort from Northeast, Brazil.

BACKGROUND: Vertical transmission of Zika virus (ZIKV) is associated with congenital malformations but the mechanism of pathogenesis remains unclear. Although host genetics appear to play a role, no genetic association study has yet been performed to evaluate this question. In order to investigate if maternal genetic variation is associated with Congenital Zika Syndrome (CZS), we conducted a case-control study in a cohort of Brazilian women infected with ZIKV during pregnancy.

METHODS: A total of 100 women who reported symptoms of zika during pregnancy were enrolled and tested for ZIKV. Among 52 women positive for ZIKV infection, 28 were classified as cases and 24 as controls based on the presence or absence of CZS in their infants. Variations in the coding region of 205 candidate genes involved in cAMP signaling or immune response were assessed by high throughput sequencing and tested for association with development of CZS.

RESULTS: From the 817 single nucleotide variations (SNVs) included in association analyses, 22 SNVs in 17 genes were associated with CZS under an additive model (alpha = 0.05). Variations c.319T>C (rs11676272) and c.1297G>A, located at ADCY3 and ADCY7 genes showed the most prominent effect. The association of ADCY3 and ADCY7 genes was confirmed using a Sequence Kernel Association Test to assess the joint effect of common and rare variations, and results were statistically significant after adjustment for multiple comparisons (P < 0.002).

CONCLUSION: These results suggest that maternal ADCY genes contribute to ZIKV pathogenicity and influence the outcome of CZS, being promising candidates for further replication studies and functional analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app