Add like
Add dislike
Add to saved papers

Developing a magnetic metal organic framework of copper bearing a mixed azido/butane-1,4-dicarboxylate bridge: magnetic and gas adsorption properties.

A magnetic metal organic framework {[Cu(but-1,4-dc)0.5(N3)(H2O)]·H2O}n (MFUM-1(Cu)) (but-1,4-dc = butane-1,4-dicarboxylate) was synthesized and characterized structurally and magnetically. In MFUM-1(Cu), each CuII ion has a distorted octahedral geometry with an obvious Jahn-Teller distortion, where the coordination environment is composed of mixed EO-azido/aliphatic based carboxylate/H2O threefold bridges. These bridges extend the structure of MFUM-1(Cu) in two dimensions by covalent connectivity and form square-shaped channels. Also, a study was done to determine the effectiveness of sonochemical synthesis for the preparation of nano-sheets of MFUM-1(Cu) and subsequently the influence of particle size on physical properties such as magnetic behavior and thermal stability. The particles were characterized by elemental analyses, infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD) analyses. The effects of parameters such as concentration, solvent, and reaction time on the size distribution, morphology, and yield of product were carefully studied. The magnetic properties of MFUM-1(Cu) and corresponding nano-structure were examined which indicated metamagnetism with strong intrachain ferromagnetic coupling versus the weak interchain antiferromagnetic coupling. Finally, the application of MFUM-1(Cu) in the separation of carbon dioxide from nitrogen and also from methane was theoretically investigated. High calculated selectivity of CO2 over N2 and CH4 reveals the potential application of MFUM-1(Cu) in practical systems of gas separation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app