JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Three-dimensional Printing of Thermoplastic Materials to Create Automated Syringe Pumps with Feedback Control for Microfluidic Applications.

Microfluidics has become a critical tool in research across the biological, chemical, and physical sciences. One important component of microfluidic experimentation is a stable fluid handling system capable of accurately providing an inlet flow rate or inlet pressure. Here, we have developed a syringe pump system capable of controlling and regulating the inlet fluid pressure delivered to a microfluidic device. This system was designed using low-cost materials and additive manufacturing principles, leveraging three-dimensional (3D) printing of thermoplastic materials and off-the-shelf components whenever possible. This system is composed of three main components: a syringe pump, a pressure transducer, and a programmable microcontroller. Within this paper, we detail a set of protocols for fabricating, assembling, and programming this syringe pump system. Furthermore, we have included representative results that demonstrate high-fidelity, feedback control of inlet pressure using this system. We expect this protocol will allow researchers to fabricate low-cost syringe pump systems, lowering the entry barrier for the use of microfluidics in biomedical, chemical, and materials research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app