Add like
Add dislike
Add to saved papers

Reduced Graphene Oxide-Anchored Manganese Hexacyanoferrate with Low Interstitial H 2 O for Superior Sodium-Ion Batteries.

Low-cost manganese hexacyanoferrate (NMHCF) possesses many favorable advantages including high theoretical capacity, ease of preparation, and robust open channels that enable faster Na+ diffusion kinetics. However, high lattice water and low electronic conductivity are the main bottlenecks to their pragmatic realization. Here, we present a strategy by anchoring NMHCF on reduced graphene oxide (RGO) to alleviate these problems, featuring a specific discharge capacity of 161/121 mA h g-1 at a current density of 20/200 mA g-1 . Moreover, the sodiation process is well revealed by ex situ X-ray diffraction, EIS and Car-Parrinello molecular dynamics simulations. At a rate of 20 mA g-1 , the hard carbon//NMHCF/RGO full cell affords a stable discharge capacity of 84 mA h g-1 (based on the weights of cathode mass) over 50 cycles, thus highlighting NMHCF/RGO an alternative cathode for sodium-ion batteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app