Add like
Add dislike
Add to saved papers

Diphenylethylenediamine-Based Potent Anionophores: Transmembrane Chloride Ion Transport and Apoptosis Inducing Activities.

Synthetic anion transporters have been recognized as one of the potential therapeutic agents for the treatment of diseases including cystic fibrosis, myotonia, and epilepsy that originate due to the malfunctioning of natural Cl- ion transport systems. Recent studies showed that the synthetic Cl- ion transporters can also disrupt cellular ion-homeostasis and induce apoptosis in cancer cell lines, leading to a revived attention for synthetic Cl- ion transporters. Herein, we report the development of conformationally controlled 1,2-diphenylethylenediamine-based bis(thiourea) derivatives as a new class of selective Cl- ion carrier. The strong Cl- ion binding properties ( Kd = 3.87-6.66 mM) of the bis(thiourea) derivatives of diamine-based compounds correlate well with their transmembrane anion transport activities (EC50 = 2.09-4.15 nM). The transport of Cl- ions via Cl- /NO3 - antiport mechanism was confirmed for the most active molecule. Perturbation of Cl- ion homeostasis by this anion carrier induces cell death by promoting the caspase-mediated intrinsic pathway of apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app