Add like
Add dislike
Add to saved papers

In situ formed nanoparticle-assisted growth of large-size single crystalline h-BN on copper.

Nanoscale 2018 September 28
h-BN is a widely used ultrathin insulator that can be synthesized in a controllable manner by chemical vapor deposition, similar to the growth of graphene. However, it is challenging to grow large-size single crystalline h-BN because of the ambiguous understanding of its growth mechanism. In this study, we propose a novel in situ formed nanoparticle-assisted growth strategy for large-size single crystalline h-BN growth on conventional polycrystalline copper. We found that the areal nucleation density of h-BN can be suppressed from ∼105 nuclei per mm2 to ∼102 nuclei per mm2 by the in situ formed nanoparticles that were introduced by pre-oxidation. Thus, single crystalline h-BN with lateral length of up to ∼102 μm was readily synthesized. Furthermore, for first time we discovered that the areal nucleation density of h-BN initially decreases and then increases under extreme annealing conditions, indicating that there is a competition-induced limit for suppressing the nucleation of h-BN on copper. This mechanism is universal for h-BN and graphene synthesis, which probably paves the way for large-size graphene/h-BN heterostructures synthesis in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app