Add like
Add dislike
Add to saved papers

Morphology of soft and rough contact via fluid drainage.

Soft Matter 2018 September 27
The dynamic of contact formation between soft materials immersed in a fluid is accompanied by fluid drainage and elastic deformation. As a result, controlling the coupling between lubrication pressure and elasticity provides strategies to design materials with reversible and dynamic adhesion to wet or flooded surfaces. We characterize the elastic deformation of a soft coating with nanometer-scale roughness as it approaches and contacts a rigid surface in a fluid environment. The lubrication pressure during the approach causes elastic deformation and prevents contact formation. We observe deformation profiles that are drastically different from those observed for elastic half-space when the thickness of the soft coating is comparable to the hydrodynamic radius. In contrast, we show that surface roughness favors fluid drainage without altering the elastic deformation. As a result, the coupling between elasticity and slip (caused by surface roughness) can lead to trapped fluid pockets in the contact region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app